Advanced geolocation plugin for Cordova and PhoneGap for Android

The W3C’s browser-based, JavaScript Geolocation API is excellent as a one-size-fits-all interface, but that approach comes at a price and it can cause some serious limitations when it comes to implementing more stringent professional, commercial and government use-cases.

Challenges with the default Geolocation API. One of the primary limitations is the Geolocation API does not tell you how it got a location. All locations are lumped together in a black box. Let me explain. On a smartphone or tablet, location data comes from one of three places: the GPS chipset, the cellular provider’s Location Service, or the browser’s Location Service. The W3C Geolocation API simply lumps these data points together. The end result is typically seen by the end user as significant and disturbingly wild jumps back and forth in the reported location, sometimes over large distances. A key to minimizing these fluctuations is to gain back control and understand which location provider created the latitude and longitude point.

Cordova-plugin-advanced-geolocation. The good news is that Android, in particular, has a very detailed API called LocationManager for examining geolocation data that comes from the device.  And, even better news for JavaScript developers is that the API, along with its access to all on-device GPS and Network location providers, has been exposed thru a Cordova plugin that is available here: https://github.com/Esri/cordova-plugin-advanced-geolocation.

What geolocation data is available? With this plugin you’ll be able to programmatically differentiate between the following geolocation data as well as get access to GPS satellites meta data:

  • Real-time GPS location – This is data from the on-board GPS or some devices will allow it to be the location data from an external GPS that is connected to the device via bluetooth.
  • Cached GPS location – Most devices cache the last-known GPS location and it’s persistent even when the device is restarted.
  • Real-time Network location triangulation – this is completely dependent on devices and cellular service providers. It may require WiFi to be turned on. It also may not be available in all countries or regions.
  • Cached Network location – Most devices cache the last-known network-based location and it’s persistent even when the device is restarted.

Use cases. With this plugin, you can now use your JavaScript skills to implement the following use cases and much more. For example, I’ve always wanted to play with the Satellite data to make a 3D map of the satellites using JavaScript. This plugin provides a huge advantage to developers building applications for capturing a single location such as field survey work as well as the following use cases and others that I haven’t thought of:

  • Determine a static outdoors location and only use GPS.
  • While indoors turn on only network location. Do not use GPS.
  • While in an urban area, use network location to get initial location before the GPS warms up and then turn off network location and only use GPS
  • Compare the differences between GPS and Network locations
  • …???

How does this plugin help minimize location fluctuations? This plugin comes with a configuration option for turning on a buffer. You can set the size of the buffer, each new geolocation from the device will be added to it, and then plugin will determine the geometric center based on all the locations in the buffer.

Are there any other advanced plugins? Yes, some Cordova plugins are focused on being activity based and will detect if you are walking, stopped, moving, etc. These plugins tend to work as apps that can be backgrounded. Feel free to browse the Cordova plug-in directory here.

Does using PhoneGap improve geolocation?

No, using PhoneGap or Cordova doesn’t change how you retrieve geolocation information from within a mobile application and it doesn’t improve accuracy. You still use the W3C HTML Geolocation API coding pattern.

The reason why is because PhoneGap runs the HTML/CSS/JS code in a native OS WebView. This is a chrome-less browser with mostly similar functionality as Chrome (Android) and Safari (iOS). There isn’t any additional functionality that would improve accuracy.

Some people have asked me if cordova-plugin-geolocation provides additional functionality. That plugin only works for devices that don’t already support geolocation and then it abides by the W3C Geolocation API spec.

The HTML Geolocation API in the browser also works offline. Yes, it’s true. You can use a web browser offline to get geolocation and even view a map without PhoneGap, here’s an example project that demonstrates the functionality in a number of ways. As long as the GPS on the device is enabled and working, and the user opt’s in at the geolocation-approval prompt then the application will receive GPS location data.

Are there any advantages to using PhoneGap for geolocation?

Yes, there are several potential advantages to using PhoneGap for geolocation. You can retrieve geolocation information while the device screen is locked and/or when the application is running in the background. You cannot do this with a typical web app. As soon as a browser is minimized a web app will stop running even if the GPS is still running.

Another advantage is you can write a PhoneGap plug-in to tap directly into the native OS location API. Taking this approach will give you a greater level of control over the information you are retrieving. And, you have coding tools and access to APIs to better manage the device’s battery life in a way that the HTML Geolocation API cannot deliver. In the case of Android you can tap into significantly greater information such as details on GPS satellites, granular information on device’s internet connection, as well as NMEA strings and more.

You can’t just wrap old websites in bootstrap and call it a day

Just because you wrapped an existing website in bootstrap doesn’t necessarily mean it’s ready for use on mobile devices. This is especially true if the website was originally designed for desktop browsers. Yes, bootstrap can significantly improve the user interface and make it flexible across multiple screen sizes. But it’s also up to you to roll up your sleeves and make sure the code behind the scenes is also worthy of being mobile-ready.

So, here are a three challenges to consider that will help keep your smartphone using visitors happy.

Challenge 1 – The internet connection on mobile devices is not as reliable as your home or office wired network. That’s a fact. Download speeds can and will vary significantly. The larger the website in MBs, the more links it has to download, the more non-optimized images then the longer it will take to render and become ready for use, especially on a mobile device. And mobile users are a very impatient bunch when it comes to sluggishness.

Size does matter with web sites. Smaller sized files download faster. The fewer number of files that make up a website also means faster downloads. Optimize, optimize and optimize some more. Minify files. Combine multiple files into one. Optimize images for web display.

Challenge 2 – Site navigation needs to be rethought and resized with mobile users in mind. Modern mobile devices use finger-based navigation, as opposed to high-precision mouse pointers. Teeny, tiny buttons or links that look cool on an ultra-high resolution MacBook retina screen positively suck when you are trying multiple times to click on them with your fingertip. On some websites using desktop navigational elements on your phone becomes like a macabre video game as you repeatedly play hit-or-miss with your fingertips.

Mobile websites should be finger lickin’ good. Okay, maybe you don’t really have to lick your fingers, but at least right size your navigational elements while keeping people’s fingers in mind. And fingers come in all shapes, sizes and levels of dexterity. Bootstrap can help with this.

Furthermore, your design and testing should work equally well in both portrait and landscape modes (phone right side up or phone on its side), and you should be able to switch back and forth seamless between the two modes in the same browser session.

Challenge 3 – Mobile devices are significantly more sensitive to browser memory leaks and bloated web pages. The mobile operating system will simply kill of any app that it deems to be using too much memory. And most of us are simply not good stewards at keeping our mobile browsers tuned up and happy. Browser caches grow huge and don’t get cleaned out regularly; we keep too many tabs open and probably have more information in our browser history than the library of congress. To further add to our woes, many of us let our phones run for weeks without a restart which can allow memory leakage to grow over time.

Tweak as many aspects of web page performance that your time will allow. Optimize old code by re-writing and striving to add new efficiencies. I know it may sound crazy, but if your site is particularly large and complex then consider creating focused, mobile-only sites that have scaled down content, rather than trying the one-size fits all approach. Smaller sites not only load faster but they are easier to navigate, take up less memory and typically perform better.